在最近的折腾中,发现某个 Python 程序运行,服务了一段时间以后老是占用很多很多的内存。
然后用了 这里 的方法去调查,发现是某个对象没有被释放,在内存中越积累越多。
当然,最后这问题得以解决了,在此将这个问题进行记录,也提醒自己以后不要犯这种问题。
来看其中这样的一组代码(将无关部分暂时隐去,想看完整的可以看这里):
cryptor.py:
#!/usr/bin/env python # # Copyright 2012-2015 clowwindy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import sys import hashlib import logging from shadowsocks import common from shadowsocks.crypto import rc4_md5, openssl, mbedtls, sodium, table CIPHER_ENC_ENCRYPTION = 1 CIPHER_ENC_DECRYPTION = 0 METHOD_INFO_KEY_LEN = 0 METHOD_INFO_IV_LEN = 1 METHOD_INFO_CRYPTO = 2 method_supported = {} method_supported.update(rc4_md5.ciphers) method_supported.update(openssl.ciphers) method_supported.update(mbedtls.ciphers) method_supported.update(sodium.ciphers) method_supported.update(table.ciphers) class Cryptor(object): def __init__(self, password, method, crypto_path=None): """ Crypto wrapper :param password: str cipher password :param method: str cipher :param crypto_path: dict or none {'openssl': path, 'sodium': path, 'mbedtls': path} """ self.password = password self.key = None self.method = method self.iv_sent = False self.cipher_iv = b'' self.decipher = None self.decipher_iv = None self.crypto_path = crypto_path method = method.lower() self._method_info = Cryptor.get_method_info(method) if self._method_info: self.cipher = self.get_cipher( password, method, CIPHER_ENC_ENCRYPTION, random_string(self._method_info[METHOD_INFO_IV_LEN]) ) else: logging.error('method %s not supported' % method) sys.exit(1) @staticmethod def get_method_info(method): method = method.lower() m = method_supported.get(method) return m def iv_len(self): return len(self.cipher_iv) def get_cipher(self, password, method, op, iv): password = common.to_bytes(password) m = self._method_info if m[METHOD_INFO_KEY_LEN] > 0: key, _ = EVP_BytesToKey(password, m[METHOD_INFO_KEY_LEN], m[METHOD_INFO_IV_LEN]) else: # key_length == 0 indicates we should use the key directly key, iv = password, b'' self.key = key iv = iv[:m[METHOD_INFO_IV_LEN]] if op == CIPHER_ENC_ENCRYPTION: # this iv is for cipher not decipher self.cipher_iv = iv return m[METHOD_INFO_CRYPTO](method, key, iv, op, self.crypto_path) def encrypt(self, buf): if len(buf) == 0: return buf if self.iv_sent: return self.cipher.encrypt(buf) else: self.iv_sent = True return self.cipher_iv + self.cipher.encrypt(buf) def decrypt(self, buf): if len(buf) == 0: return buf if self.decipher is None: decipher_iv_len = self._method_info[METHOD_INFO_IV_LEN] decipher_iv = buf[:decipher_iv_len] self.decipher_iv = decipher_iv self.decipher = self.get_cipher( self.password, self.method, CIPHER_ENC_DECRYPTION, decipher_iv ) buf = buf[decipher_iv_len:] if len(buf) == 0: return buf return self.decipher.decrypt(buf) def gen_key_iv(password, method): method = method.lower() (key_len, iv_len, m) = method_supported[method] if key_len > 0: key, _ = EVP_BytesToKey(password, key_len, iv_len) else: key = password iv = random_string(iv_len) return key, iv, m def encrypt_all_m(key, iv, m, method, data, crypto_path=None): result = [iv] cipher = m(method, key, iv, 1, crypto_path) result.append(cipher.encrypt_once(data)) return b''.join(result) def decrypt_all(password, method, data, crypto_path=None): result = [] method = method.lower() (key, iv, m) = gen_key_iv(password, method) iv = data[:len(iv)] data = data[len(iv):] cipher = m(method, key, iv, CIPHER_ENC_DECRYPTION, crypto_path) result.append(cipher.decrypt_once(data)) return b''.join(result), key, iv def encrypt_all(password, method, data, crypto_path=None): result = [] method = method.lower() (key, iv, m) = gen_key_iv(password, method) result.append(iv) cipher = m(method, key, iv, CIPHER_ENC_ENCRYPTION, crypto_path) result.append(cipher.encrypt_once(data)) return b''.join(result)
这个的目的主要就是对于发送来的数据进行加解密,使用的时候将这个类实例化,或者直接调用最后的三个方法来加解密数据。
然后是这个,我们拿泄露的那个对象所在的 openssl 来说
class OpenSSLCryptoBase(object): """ OpenSSL crypto base class """ def __init__(self, cipher_name, crypto_path=None): self._ctx = None self._cipher = None if not loaded: load_openssl(crypto_path) cipher_name = common.to_bytes(cipher_name) cipher = libcrypto.EVP_get_cipherbyname(cipher_name) if not cipher: cipher = load_cipher(cipher_name) if not cipher: raise Exception('cipher %s not found in libcrypto' % cipher_name) self._ctx = libcrypto.EVP_CIPHER_CTX_new() self._cipher = cipher if not self._ctx: raise Exception('can not create cipher context') self.encrypt_once = self.update self.decrypt_once = self.update def update(self, data): """ Encrypt/decrypt data :param data: str :return: str """ global buf_size, buf cipher_out_len = c_long(0) l = len(data) if buf_size < l: buf_size = l * 2 buf = create_string_buffer(buf_size) libcrypto.EVP_CipherUpdate( self._ctx, byref(buf), byref(cipher_out_len), c_char_p(data), l ) # buf is copied to a str object when we access buf.raw return buf.raw[:cipher_out_len.value] def __del__(self): self.clean() def clean(self): if self._ctx: ctx_cleanup(self._ctx) libcrypto.EVP_CIPHER_CTX_free(self._ctx) class OpenSSLAeadCrypto(OpenSSLCryptoBase, AeadCryptoBase): """ Implement OpenSSL Aead mode: gcm, ocb """ def __init__(self, cipher_name, key, iv, op, crypto_path=None): OpenSSLCryptoBase.__init__(self, cipher_name, crypto_path) AeadCryptoBase.__init__(self, cipher_name, key, iv, op, crypto_path) key_ptr = c_char_p(self._skey) r = libcrypto.EVP_CipherInit_ex( self._ctx, self._cipher, None, key_ptr, None, c_int(op) ) if not r: self.clean() raise Exception('can not initialize cipher context') r = libcrypto.EVP_CIPHER_CTX_ctrl( self._ctx, c_int(EVP_CTRL_AEAD_SET_IVLEN), c_int(self._nlen), None ) if not r: self.clean() raise Exception('Set ivlen failed') self.cipher_ctx_init() def cipher_ctx_init(self): """ Need init cipher context after EVP_CipherFinal_ex to reuse context :return: None """ iv_ptr = c_char_p(self._nonce.raw) r = libcrypto.EVP_CipherInit_ex( self._ctx, None, None, None, iv_ptr, c_int(CIPHER_ENC_UNCHANGED) ) if not r: self.clean() raise Exception('can not initialize cipher context') AeadCryptoBase.nonce_increment(self) def set_tag(self, tag): """ Set tag before decrypt any data (update) :param tag: authenticated tag :return: None """ tag_len = self._tlen r = libcrypto.EVP_CIPHER_CTX_ctrl( self._ctx, c_int(EVP_CTRL_AEAD_SET_TAG), c_int(tag_len), c_char_p(tag) ) if not r: self.clean() raise Exception('Set tag failed') def get_tag(self): """ Get authenticated tag, called after EVP_CipherFinal_ex :return: str """ tag_len = self._tlen tag_buf = create_string_buffer(tag_len) r = libcrypto.EVP_CIPHER_CTX_ctrl( self._ctx, c_int(EVP_CTRL_AEAD_GET_TAG), c_int(tag_len), byref(tag_buf) ) if not r: self.clean() raise Exception('Get tag failed') return tag_buf.raw[:tag_len] def final(self): """ Finish encrypt/decrypt a chunk (<= 0x3FFF) :return: str """ global buf_size, buf cipher_out_len = c_long(0) r = libcrypto.EVP_CipherFinal_ex( self._ctx, byref(buf), byref(cipher_out_len) ) if not r: self.clean() # print(self._nonce.raw, r, cipher_out_len) raise Exception('Finalize cipher failed') return buf.raw[:cipher_out_len.value] def aead_encrypt(self, data): """ Encrypt data with authenticate tag :param data: plain text :return: cipher text with tag """ ctext = self.update(data) + self.final() + self.get_tag() self.cipher_ctx_init() return ctext def aead_decrypt(self, data): """ Decrypt data and authenticate tag :param data: cipher text with tag :return: plain text """ clen = len(data) if clen < self._tlen: self.clean() raise Exception('Data too short') self.set_tag(data[clen - self._tlen:]) plaintext = self.update(data[:clen - self._tlen]) + self.final() self.cipher_ctx_init() return plaintext class OpenSSLStreamCrypto(OpenSSLCryptoBase): """ Crypto for stream modes: cfb, ofb, ctr """ def __init__(self, cipher_name, key, iv, op, crypto_path=None): OpenSSLCryptoBase.__init__(self, cipher_name, crypto_path) key_ptr = c_char_p(key) iv_ptr = c_char_p(iv) r = libcrypto.EVP_CipherInit_ex(self._ctx, self._cipher, None, key_ptr, iv_ptr, c_int(op)) if not r: self.clean() raise Exception('can not initialize cipher context') self.encrypt = self.update self.decrypt = self.update ciphers = { 'aes-128-cfb': (16, 16, OpenSSLStreamCrypto), 'aes-192-cfb': (24, 16, OpenSSLStreamCrypto), 'aes-256-cfb': (32, 16, OpenSSLStreamCrypto), 'aes-128-ofb': (16, 16, OpenSSLStreamCrypto), 'aes-192-ofb': (24, 16, OpenSSLStreamCrypto), 'aes-256-ofb': (32, 16, OpenSSLStreamCrypto), 'aes-128-ctr': (16, 16, OpenSSLStreamCrypto), 'aes-192-ctr': (24, 16, OpenSSLStreamCrypto), 'aes-256-ctr': (32, 16, OpenSSLStreamCrypto), 'aes-128-cfb8': (16, 16, OpenSSLStreamCrypto), 'aes-192-cfb8': (24, 16, OpenSSLStreamCrypto), 'aes-256-cfb8': (32, 16, OpenSSLStreamCrypto), 'aes-128-cfb1': (16, 16, OpenSSLStreamCrypto), 'aes-192-cfb1': (24, 16, OpenSSLStreamCrypto), 'aes-256-cfb1': (32, 16, OpenSSLStreamCrypto), 'bf-cfb': (16, 8, OpenSSLStreamCrypto), 'camellia-128-cfb': (16, 16, OpenSSLStreamCrypto), 'camellia-192-cfb': (24, 16, OpenSSLStreamCrypto), 'camellia-256-cfb': (32, 16, OpenSSLStreamCrypto), 'cast5-cfb': (16, 8, OpenSSLStreamCrypto), 'des-cfb': (8, 8, OpenSSLStreamCrypto), 'idea-cfb': (16, 8, OpenSSLStreamCrypto), 'rc2-cfb': (16, 8, OpenSSLStreamCrypto), 'rc4': (16, 0, OpenSSLStreamCrypto), 'seed-cfb': (16, 16, OpenSSLStreamCrypto), # AEAD: iv_len = salt_len = key_len 'aes-128-gcm': (16, 16, OpenSSLAeadCrypto), 'aes-192-gcm': (24, 24, OpenSSLAeadCrypto), 'aes-256-gcm': (32, 32, OpenSSLAeadCrypto), 'aes-128-ocb': (16, 16, OpenSSLAeadCrypto), 'aes-192-ocb': (24, 24, OpenSSLAeadCrypto), 'aes-256-ocb': (32, 32, OpenSSLAeadCrypto), }
可以看到,分为三个类,OpenSSLStreamCrypto 流加密类,OpenSSLAeadCrypto AEAD加密类,OpenSSLCryptoBase 基础加密类,前二者继承后者,在这上面重写方法来实现各自所需要的实现的特性。
总结来看,就和个链条一样, encrypt 里有个 Encrypt 类,这个类下调用 crypto 文件夹里各种加密库的类,将其包装好以便使用。
而就是前面这两个对象存在内存泄漏问题,没有被 Python 的垃圾回收机制给回收掉。
当然我们从这个项目的 commit 里也可以看到,之前的维护者做了很多努力,想解决这个问题,比如在抛出异常的时候调用 clean,将对象回收掉,但就下面的反馈来看似乎作用不太大,算是治标不治本。
Python 是判断对象还有没有在被调用来判断这个对象该不该回收的,所以就得从这个方面入手,看看有哪些该标记为没有被调用的对象还在被调用。
首先我想到的就是重写 encrypt 里的 _del_ 方法,这个是 Python 销毁对象的时候系统内部调用的方法。我就尝试重写了 _del_ ,在其中调用 crypto 里对应加密库类的 clean 方法。然后测试运行发现,内存泄露的速度确实减缓了一些,但也还是没有真正的解决问题。
再后来仔细观察,发现 主要就是 OpenSSL 流加密的对象泄露得最快,而 AEAD 的泄露又似乎少了一些。而对于其他的加密库,似乎并没有内存泄露。
再尝试用 objgraph 看了看(其实一开始就应该用这个看一看的),发现是 self.update 这个方法一直被调用着,导致对象无法被释放。
再仔细看看代码,发现为了使代码优雅一些,对于加密的调用分为四个方法 encrypt, decrypt, encrypt_once, decrypt_once 。Encrypt 类分别调用这四个方法,来实现不同的加密操作。
对于流加密来说,encrypt, decrypt, encrypt_once, decrypt_once 其实都是指向所调用的加密库类的 update 方法,在代码中是以下面的形式调用的(省略掉无关的代码了)。
class OpenSSLCryptoBase(object): def __init__(self, cipher_name, crypto_path=None): self.encrypt_once = self.update self.decrypt_once = self.update class OpenSSLStreamCrypto(OpenSSLCryptoBase): def __init__(self, cipher_name, key, iv, op, crypto_path=None): self.encrypt = self.update self.decrypt = self.update
而对于 AEAD 来说,则是下面这样
class OpenSSLCryptoBase(object): def __init__(self, cipher_name, crypto_path=None): self.encrypt_once = self.update self.decrypt_once = self.update class OpenSSLAeadCrypto(OpenSSLCryptoBase, AeadCryptoBase): def __init__(self, cipher_name, key, iv, op, crypto_path=None): ......
在 aead.py 的 AeadCryptoBase 类里:
class AeadCryptoBase(object): def __init__(self, cipher_name, key, iv, op, crypto_path=None): self.encrypt_once = self.aead_encrypt self.decrypt_once = self.aead_decrypt
存在这样的引用,组成了 AEAD 的加密方法的引用。
然后我就怀疑,是不是这种引用上存在一些坑,导致了对象在使用完毕后无法被正确地被系统识别和回收。
尝试将这些引用进行改写,比如
self.encrypt_once = self.update
将其改写为
def encrypt_once(self, data): return self.update(data)
原先是 Encrypt 类调用 加密库类里“包装”好了的加密方法(encrypt, decrypt, encrypt_once, decrypt_once),加密库对外方法根据情况直接引用自身的方法引用方法,比如 在 流加密里 上面这四个函数都是指向自身的 update 方法,AEAD 里则是有两个是自身所拥有的方法,而另外两个则是指向自身的 update 方法。
而改写之后,就不是直接指向了,由改写之后的方法作为中转,在其中再调用各自应该调用的方法。
这样改写之后,经过长时间的测试,就再也没有发现内存泄露了,内存长时间的占用都维持在一个低位水平了。
原因分析,只能就我个人的猜测来说,我觉得是原先的引用方式,是直接引用的,调用到的直接是最终的函数了,这样调用确实是方便,减少了一些代码量。但这样每次调用之后,就需要对每个对象进行彻底的标记和释放,如果不标记,这样链式引用会造成系统无法知道从何处回收起,从而也就一直不被回收了。当然- -如果不嫌麻烦- -而且心够细的话,能在使用之后进行精确的标记,能让系统回收,那也行。
而改写之后,就不存在链式引用了,外部调用的就相当于调用被调用对象的自身方法了,从而系统能在这个对象使用完之后进行正确的回收。
对于自己来说,在以后的开发中也要自己注意一下,尽量不要进行类似的链式引用。
9 个评论
无人小站
Py大佬
glzjin
并不是
_admin
大佬喜欢py交易
glzjin
不喜欢。
123
hahahaha native
西园美鸟
见过 Windows 7 模块安装程序也会泄漏 早上起来 快 2 GB了
西园美鸟
Windows Modules Installer TrustedInstaller.exe ,以前安装系统更新在 task manager 中看到的。感觉特别卡
glzjin
那就很尴尬了- –
Viplikes Company
Thank you for this article! I will use this info